Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Production of gravitational waves in the early Universe is discussed in a cosmologically consistent analysis within a first-order phase transition involving a hidden sector feebly coupled with the visible sector. Each sector resides in its own heat bath leading to a potential dependent on two temperatures and on two fields: one a standard model Higgs field and the other a scalar arising from a hidden sector gauge theory. A synchronous evolution of the hidden and visible sector temperatures is carried out from the reheat temperature down to the electroweak scale. The hydrodynamics of two-field phase transitions, one for the visible and the other for the hidden is discussed, which leads to separate tunneling temperatures and different sound speeds for the two sectors. Gravitational waves emerging from the two sectors are computed and their imprint on the measured gravitational wave power spectrum vs frequency is analyzed in terms of bubble nucleation signature, i.e., detonation, deflagration, and hybrid. It is shown that the two-field model predicts gravitational waves accessible at several proposed gravitational wave detectors: LISA, DECIGO, BBO, and Taiji, and their discovery would probe specific regions of the hidden sector parameter space and may also shed light on the nature of bubble nucleation in the early Universe. The analysis presented here indicates that the cosmologically preferred models are those where the tunneling in the visible sector precedes the tunneling in the hidden sector and the sound speed lies below its maximum, i.e., . It is of interest to investigate if these features are universal and applicable to a wider class of cosmologically consistent models. Published by the American Physical Society2024more » « less
-
A variety of possibilities exist for dark matter aside from WIMPS, such as hidden sector dark matter. We discuss synchronous thermal evolution of visible and hidden sectors and show that the density of thermal relics can change $$O(100\%)$$ and $$\Delta N_{eff}$$ by a factor of up to $10^5$ depending of whether the hidden sector was hot or cold at the reheat temperature. It is also shown that the approximation of using separate entropy conservation for the visible and hidden sectors is invalid even for a very feeble coupling between the two.more » « less
-
A variety of supergravity and string models involve hidden sectors where the hidden sectors may couple feebly with the visible sectors via a variety of portals. While the coupling of the hidden sector to the visible sector is feeble its coupling to the inflaton is largely unknown. It could couple feebly or with the same strength as the visible sector which would result in either a cold or a hot hidden sector at the end of reheating. These two possibilities could lead to significantly different outcomes for observables. We investigate the thermal evolution of the two sectors in a cosmologically consistent hidden sector dark matter model where the hidden sector and the visible sector are thermally coupled. Within this framework we analyze several phenomena to illustrate their dependence on the initial conditions. These include the allowed parameter space of models, dark matter relic density, proton-dark matter cross section, effective massless neutrino species at BBN time, self-interacting dark matter cross-section, where self-interaction occurs via exchange of dark photon, and Sommerfeld enhancement. Finally fits to the velocity dependence of dark matter cross sections from galaxy scales to the scale of galaxy clusters is given. The analysis indicates significant effects of the initial conditions on the observables listed above. The analysis is carried out within the framework where dark matter is constituted of dark fermions and the mediation between the visible and the hidden sector occurs via the exchange of dark photons. The techniques discussed here may have applications for a wider class of hidden sector models using different mediations between the visible and the hidden sectors to explore the impact of Big Bang initial conditions on observable physics.more » « less
An official website of the United States government
